
Rendering and User Input
In this chapter, we will begin our journey into the world of OpenGL by performing 
some basic initialization steps, and rendering an object onto our window. Then we 
will learn how to gather user inputs, and how to manipulate the camera using that 
input in order to view our 3D scene from any angle.

Rendering the scene
In its most basic form, 3D rendering involves four essential tasks:

• Creating a blank canvas on which to draw
• Painting every object in the world onto the canvas, based on the direction  

it is being viewed from (by the camera)
• Copying the canvas image to the screen
• Clearing the canvas and repeating the process

However, there is much more nuance and complication involved in this process than 
it might first appear. In this section, we will explore some of the complications of 3D 
rendering and how they are typically worked around. In-depth explanations of these 
topics are beyond the scope of this book, and could fill entire chapters by themselves. 
But, we'll give each of them a cursory examination so that we're not left completely 
in the dark.

Continue from here using the Chapter2.1_RenderingTheScene 
project files.
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Introducing double-buffering
One complete cycle of the previous tasks is often called a single frame, and when 
the cycle is repeated multiple times per second, this gives us the frame rate, or how 
many frames per second are being drawn. As long as the cycle is repeated often 
enough, and there are gradual differences in the position of the camera and the 
world's objects, then our brain interprets this information as an animated scene — 
much like an animated cartoon on TV. Other common words to describe these cycles 
are refresh, iteration, or render-call.

When we perform these tasks, the graphics system spends most of its time handling 
the second task: drawing the world's objects onto the canvas. When an object is 
rendered the graphics system picks the corresponding pixel in the canvas and sets 
the color of the object there.

This canvas is typically referred to as a buffer. Whenever lots of unique 
values of a common data type are stored together (in this case a unique 
color value for each pixel), we usually refer to it as a buffer.

When the display system is ready to draw the next frame, it grabs the current buffer 
from the video memory (which could be in a dedicated GPU or elsewhere) and copies 
it for us to be seen on the screen. The buffer is then cleared and the process repeats.

But, what happens if the graphics card has not finished rendering all of the objects 
before the screen grabs the buffer? If the two processes are not synchronized, it 
would result in rendering of partial frames which would look very obvious to the 
human eye and ruin the illusion we're trying to create.

To solve this problem, we will use two buffers instead of one; this is called double-
buffering. At any moment, one buffer is being displayed (known as the frontbuffer) 
while the other is being drawn to (known as the backbuffer). When we've finished 
drawing onto the backbuffer, we swap the buffers around so that the second is being 
displayed, while we draw onto the first. We repeat this process over and over again to 
ensure that we never draw onto the same buffer that we're displaying. This results in a 
more consistent scene without the graphical glitches.

Note that we have already enabled this feature back 
in Chapter 1, Building a Game Application, when we 
called the glutInitDisplayMode() function.



Chapter 2

[ 21 ]

The following diagram shows the working of double-buffering:
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The command to swap these buffers in FreeGLUT is glutSwapBuffers(), and the 
command to clear the backbuffer is glClear(). In order to clear the color value 
of every pixel in the current buffer, we pass the value GL_COLOR_BUFFER_BIT into 
glClear(). Both of these functions must be called inside the Idle() function, 
which is automatically and repeatedly called by FreeGLUT whenever it's not busy 
processing its own events. This is the moment where we should process our own 
background tasks such as physics processing, object management, responding to 
game events, and even rendering itself.

In order to set the clearing color, we call the glClearColor() function as follows:

glClearColor(0.6, 0.65, 0.85, 0);
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The given values should result in a light-blue color that is 60 percent red, 65 percent 
green, and 85 percent blue. The fourth parameter is the alpha (transparency) value, 
and is typically set to 0 in this situation. The following screenshot shows our 
application window, and now that glClear() is being called every iteration:

Understanding the basics of a camera
In order to visualize objects in our scene, a camera is required. The mathematics 
involved in camera control and movement can be quite confusing, so we'll explore 
it more in-depth towards the end of this chapter. For now, we will simply discuss a 
stationary camera.

An essential concept in 3D rendering is the transformation matrix, and the most 
important of which, that are used time and time again, are the view and projection 
matrices. The view matrix represents the camera's position/rotation in space, and 
where it's facing, while the projection matrix represents the camera's aspect ratio 
and bounds (also known as the camera's frustum), and how the scene is stretched/
warped to give an appearance of depth (which we call perspective).

One of the most important properties of matrices is being able to combine two matrices 
together, through a simple matrix multiplication, and resulting in a transformation 
matrix that represents both. This property massively cuts down the amount of 
mathematics that needs to be performed every time we render the scene.
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In OpenGL, we must select the matrix we wish to modify with glMatrixMode(). 
From that point onwards, or until glMatrixMode() is called again, any matrix-
modifying commands will affect the selected matrix. We will be using this command 
to select the projection (GL_PROJECTION) and view (GL_MODELVIEW) matrices.

glIdentity
The glIdentity function sets the currently selected matrix to the identity matrix, 
which is effectively the matrix equivalent of the number one. The identity matrix is 
most often used to initialize a matrix to a default value before calling future functions 
described in the following sections.

glFrustum
The glFrustum function multiplies the currently selected matrix by a projection 
matrix defined by the parameters fed into it. This generates our perspective effect 
(mentioned previously), and when applied, creates the illusion of depth. It accepts 
six values describing the left, right, bottom, top, near, and far clipping planes of the 
camera's frustum: essentially the six sides of a 3D trapezoid (or trapezoidal prism in 
technical terms). The following diagram is an example of a camera frustum, where 
FOV stands for field of view:
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gluLookAt
The gluLookAt function multiplies the currently selected matrix by a view matrix 
generated from nine doubles (essentially three vectors), which represents the eye 
position, the point at which the camera is looking at, and a vector that represents 
which direction is up. The up vector is used to assist in defining the camera's 
rotation. To use common angular rotation vernacular, if we only define a position 
and target, that gives us the pitch and yaw we need, but there's still the question of 
the roll, so we use the up vector to help us calculate it.

glViewport
Finally, glViewport() is used to describe the current Viewport, or where we should 
draw the current camera's view of the scene in the application window. Typically, 
this would stretch to the bounds of the window from 0, 0 to w, h (where w and h 
are the screen width/height respectively), but this can be used to define whatever 
viewport is required.

The glViewport() function should be called each time when FreeGLUT calls the 
Reshape() function, which is called every time when the window size changes, 
passing us the new height and width. It's also called once when the application is 
first launched.

In order to maintain data for our camera, we will keep the following member 
variables in our application class so that we can refer to them as needed:

btVector3 m_cameraPosition;
btVector3 m_cameraTarget;
btVector3 m_upVector;
float m_nearPlane;
float m_farPlane;

Throughout this book we will be using Bullet's built-in vector, 
quaternion, and matrix classes for our 3D mathematics to 
spare us from having to build our own from scratch.

Meanwhile, the code to update our camera is called within the Idle() function.  
The comments in the chapter's source code will explain the details of this function.  
If any of the commands in the UpdateCamera() function don't make much sense, 
then go back to the start of this section and refamiliarize yourself with the purpose 
of the various gl- commands, when the FreeGLUT callback functions are triggered, 
and how they are used.
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Basic rendering and lighting
We will now construct a simple object from the primitive shapes (triangles),  
and explore how OpenGL's built-in lighting system can help us to visualize  
our object in three dimensions.

Continue from here using the Chapter2.2_
BasicRenderingAndLighting project files.

Creating a simple box
The glBegin() and glEnd() functions are the two important OpenGL commands 
that work together to define the starting and ending points (known as delimiters) 
for the construction of a primitive shape. The glBegin() function requires a single 
argument that specifies the type of primitive to render. This determines whether the 
vertices we input represent points, lines, triangles, quads, or whatever the renderer 
supports. We'll be using GL_TRIANGLES for our box, each of which requires three 
unique vertices in space in order to render.

There are a variety of commands that can be called between glBegin() and 
glEnd() to build the primitive, but the two commands that we will be using are 
glVertex3f(), which defines the position of a vertex in space, and glColor3f() 
which sets the color of subsequent vertices using the same RGB system that we saw 
in the previous chapter (note that it does not have an alpha value).

The actual task of rendering the box happens in the DrawBox() function of the 
chapter's source code. The most important part is as follows:

  static int indices[36] = {
    0,1,2, 3,2,1, 4,0,6, 6,0,2, 5,1,4, 4,1,0, 7,3,1, 7,1,5, 5,4,7, 
    7,4,6, 7,2,3, 7,6,2};
  glBegin (GL_TRIANGLES);
  for (int i = 0; i < 36; i += 3) {
    const btVector3 &vert1 = vertices[indices[i]];
    const btVector3 &vert2 = vertices[indices[i+1]];
    const btVector3 &vert3 = vertices[indices[i+2]];
    glVertex3f (vert1.x(), vert1.y(), vert1.z());
    glVertex3f (vert2.x(), vert2.y(), vert2.z());
    glVertex3f (vert3.x(), vert3.y(), vert3.z());
  }
  glEnd();
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DrawBox() creates a closed box object based on the size of the dimensions we wish 
to build it from. The input parameter is btVector3, providing the three dimensions 
of the box. DrawBox() then uses the concept of indices to iterate through the number 
of vertices we want, without having to repeat the data. We could create the box from 
36 different points, but really there are only eight unique points on a box. Indexes 
work by labelling each of these eight points with a unique number (index) from 0 to 
7, and use those to define the triangles, instead. Here is a screenshot of our box with 
no lighting applied:

Let there be light!
At this stage, we can see our box, but all of its faces have exactly the same  
coloring, which makes it a little difficult to determine the exact shape as it  
moves around in space. OpenGL has some basic built-in lighting functionality,  
which we will make use of.
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Normals
Normals represent the direction pointing away from a given surface or point. They 
are used in a variety of useful techniques (and not just lighting!), and the most basic 
of which is simple diffuse lighting or lighting an object based on the angle between 
the light source and the surface. Our lighting system will use each point's normal to 
decide in which direction the incoming light should reflect away from that surface 
helping it calculate the overall color of the polygon.

Setting the normal for a given vertex can be accomplished by calling the 
glNormal3f() function. This function sets the normal for the subsequent vertices, 
which could be more than one in the case where they all share the same normal 
value until glNormal3f() is called again. For the record, glColor3f() functions in 
the same way. The renderer assumes that you're using the same color and normal for 
each new vertex until you specify otherwise.

The normal can be calculated fairly easily by performing a cross-product on the three 
vertices that make up the triangle. If we remember our 3D mathematics, this gives 
us a vector perpendicular to the vectors of all three vertices. The cross product is 
noncommutative, so the output vector could either point inwards or outwards from 
the surface, depending on what order we performed the cross product, but fixing it  
is simply a matter of multiplying it by -1.

Creating ambient, diffuse, and specular 
lighting
There are three basic lighting effects that were some of the earliest lighting effects 
produced in 3D graphics and are still used to today to simulate basic and cheap 
lighting effects in a 3D environment.

Ambient lighting is used to simulate the base background lighting of a scene. It is 
essentially the minimum color value of every pixel in the scene in the absence of any 
other light sources; so if we had an ambient lighting value of (0.3,0.3,0.3), and there 
were no other light sources present, everything we render would be colored dark 
grey. Computationally, this effect is cheap.
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Diffuse lighting, as mentioned earlier, depends on the direction of the light 
and simulates the effect of light radiating from a source and rebounding off the 
surfaces. The shallower the angle between the direction of the light and the surface, 
the weaker the effect that the light will have on that surface. This effect requires 
additional mathematics compared to ambient lighting (essentially one dot-product 
per vertex per light) to determine the output.

Finally, specular lighting represents the shininess of an object by highlighting  
certain areas with a brighter color depending on the angle of the camera with the 
light source. Because the camera also gets involved, the effect itself changes as the 
camera moves, and requires a greater amount of mathematics to produce.

However, despite of the difference in mathematical requirements, these three  
effects are almost trivialized by modern GPUs, and there are far more advanced  
and realistic visual effects such as global illumination, refraction, depth of field,  
HDR lighting, and so on, making these simple lighting effects a drop in the ocean  
by comparison.

The following diagram shows the same object rendered with ambient, ambient plus 
diffuse, and ambient plus diffuse plus specular lighting, respectively.

Understanding depth testing
Depth testing is an important part of graphical rendering that specifies how  
objects should be redrawn over others. To draw a painting in the real world,  
we must layer our objects on top of others in the correct order, as we start with the  
sky, then we add a hill on top of the sky, and then add a tree on top of the hill. But, if 
we draw our tree first, then overdraw with the hill, and then overdraw again with the 
sky, we would be left with just the sky on our canvas, and an incorrect representation 
of what we wanted.
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The following diagram shows three objects rendered with and without depth testing 
enabled, respectively. The order of rendering is the small box, the large box, and then 
the sphere. The small box is closer to the camera, but without depth testing, the small 
box will be overdrawn by the remaining two. When depth testing is enabled, the 
renderer understands not to overdraw an object that is closer to the camera.

We need to store this depth information each time we render a new object so we 
know the depth of the object currently drawn there; but we can't use the original 
backbuffer to store this information since, there's just not enough information stored 
in a single RGBA value to do so. So, to keep a track of this information, we add 
another buffer called the depth buffer. Each time we attempt to render a pixel, we 
check the depth value of the pixel from the depth buffer (also known as the z-buffer, 
because it keeps track of the z-value of each pixel away from the camera). If the pixel 
is closer, then we render the object's color pixel to the backbuffer, and write the new 
z-value into the depth buffer. The next time we try to render at that pixel location, 
we will have the updated value to compare with.

Earlier in this chapter, we mentioned how we can set multiple flags in 
glClear(), to clear certain buffers. The GL_DEPTH_BUFFER_BIT flag 
is used to clear the depth buffer each render call.

Let's go over some of the important OpenGL functions used for a basic lighting and 
depth testing system. In each case, there are more options available in the OpenGL 
documentation, which can be examined at your leisure.
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glLightfv
The glLightfv() function is used to specify the properties of a given light. The 
first parameter is used to select which light to edit, the second is used to determine 
which property to edit, and the third is used to specify the new value. The first two 
parameters must be an enumerator (or enum) corresponding to a specific value. 
For instance, the options for the first parameter can be GL_LIGHT0, GL_LIGHT1, 
GL_LIGHT2, and so on. Meanwhile, the second parameter could be GL_AMBIENT, 
GL_DIFFUSE, or GL_SPECULAR to define which lighting property of the given light to 
modify, or even GL_POSITION to define its position. As an example, the following 
call sets the ambient lighting value of the first (zeroth) light to the value of ambient, 
where ambient is btVector3 representing the ambient color we want:

glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);

glEnable
The glEnable() function is a very generic function used to enable certain features 
in the OpenGL library. Every feature we enable typically consumes more processing 
power, so OpenGL gives us the freedom to enable only what we need. We will 
use this function to enable lighting in general (GL_LIGHTING), create a single light 
(GL_LIGHT0), enable the coloring of our primitives (GL_COLOR_MATERIAL), and enable 
depth testing (GL_DEPTH_TEST).

glMaterialfv/glMateriali
The glMaterialfv and glMateriali functions specify material parameters for the 
lighting system. Specifically, we will be using them to define the strength of our 
specular lighting effect. The first parameter for both functions can either be GL_
FRONT, GL_BACK, or both combined to define if the setting should affect front or back 
faces (faces pointing towards or away from the camera — which is determined by 
using the normal).

We will be using them as follows:

glMaterialfv(GL_FRONT, GL_SPECULAR, specular);
glMateriali(GL_FRONT, GL_SHININESS, 15);

The first call sets the color of the specular effect through GL_SPECULAR (we re-use the 
specular variable for convenience since it already defines a white color). The second 
sets the shininess (GL_SHININESS) to a value of 15. Larger values produce weaker 
shine effects, and vice versa.
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glShadeModel
The glShadeModel() function sets the current style of lighting to either GL_FLAT  
or GL_SMOOTH. This is most noticeable on objects such as spheres. Flat shading is  
less computationally expensive, but provides a less believable lighting model.  
Even though the performance hit is barely noticeable on modern GPUs, it can  
be used for a particular artistic style, as shown in the following screenshot:

This effect is achieved by using the previously mentioned normals. With a flat 
shading model, the face is colored based on the direction of the light and the normal 
of the first vertex on the face, and it assumes that the normal value for the rest is the 
same. Hence, the mathematics used to calculate the diffuse lighting color of each 
pixel on the face will result in the exact same color. Smooth shading, on the other 
hand, calculates a separate result for each vertex independently, and then blends  
the computed color for each pixel between them. It is a very primitive lighting  
effect, but gives our objects a more believable appearance.

glDepthFunc
The glDepthFunc function sets the depth testing function the renderer will use, 
which could be one of the following options:

• GL_ALWAYS

• GL_NEVER

• GL_GREATER

• GL_LESS
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These options specify whether the pixel should be overwritten with new information 
in one of four ways: always, never, if the z-value is greater than the current value 
(further away), or less than the current value (closer). The most common approach is 
to choose GL_LESS, but never let it to be said that OpenGL didn't give us the power 
to create whatever weird and wacky graphical effects we want, since choosing the 
other values will result in some interesting scenes (just use your imagination and the 
tree/hill/sky example from earlier).

So with this knowledge, inside the Initialize() function, we create a light at 
position (5,10,1) with ambient, diffuse, and specular properties, set the shading 
model to smooth lighting (GL_SMOOTH), and set the depth testing function to only 
overwrite pixels if their depth value is less than the existing value (GL_LESS).  
And voila! We have lighting enabled in our scene. Here is our box with basic  
lighting applied:

Coloring your box
If you recall, we called glColor3f() in our DrawBox() function, and set the default 
color parameter in the function's declaration to an RGB value of (1,1,1). This 
represents the white color: 100 percent  red, green, and blue in additive coloring. 
Since we're not passing a value for this parameter in our DrawBox() call, it is still 
defaulting to white. Therefore, in order to change the color of our box, we simply 
add a color value to our DrawBox() call in the form of a btVector3.

DrawBox(btVector3(1, 1, 1), btVector3(1.0f, 0.2f, 0.2f));
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Feel free to tweak the highlighted values until you find a color you prefer.

Note that even though color itself is not a vector, a btVector3 is 
a convenient object to use to store three unique floats.

Understanding rendering pipelines
So far (and throughout the remainder of this book), we have performed rendering 
through a technique called immediate mode, where the graphics system essentially 
forgets the information of each render-call, and must be reminded of the data every 
time we draw. We have witnessed this in our DrawBox() function, where we literally 
rewrite the information to define and draw our box every single time the function is 
called, and it is called every single render-call. This is obviously not the most efficient 
way of doing things!

Immediate mode is opposite to retained mode where vertex data is stored (retained) 
within memory, and recalled by the graphics system when requested. The retained 
mode method consumes more memory during runtime, but it is much faster and 
more efficient. However, it can be difficult to understand and use when you're just 
starting with the 3D graphics.

In addition, there are two types of high-level rendering process called the fixed-
function pipeline and the programmable pipeline. All of the code in this book 
performs its rendering using the fixed-function pipeline. It is called so because it 
follows a fixed series of function calls to draw the graphical elements to the screen, 
such as processing the primitives, performing transforms and lighting, coloring, 
depth testing, and so on. The important point to make here is that the order of these 
steps cannot be changed and you have a limited amount of control over each step.

The more modern form of rendering is the programmable pipeline. It is much more 
fluid, allowing the graphics programmer to have an immense amount of control 
over the rendering steps through the use of custom scripts called shaders. Shaders 
can vary from very simple scripts that render objects with ambient shading, to 
complex procedures that render effects such as motion blur, HDR lighting, produce 
millions of pixel-sized particles, depth of field, and many more. There are even 
several languages that can be used to write shaders (common ones are Cg, GLSL, 
and HLSL), and they can be used to produce any graphical effect you want to render 
(depending on performance limitations, of course). Entire volumes can, and have 
been written on the nuances of writing shaders with all the various languages, 
algorithms, and styles of programming they support, making their understanding a 
highly skilled and highly valued area of 3D graphics programming.
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But, don't feel that you've wasted time learning the fixed-function pipeline, because 
the programmable pipeline can be utterly bewildering if you haven't established a 
firm grasp of the fundamentals through the fixed-function pipeline first.

User input and camera control
We will now learn how to gather keyboard input from FreeGLUT and use it  
to interact with our world. This will take the form of rotating our camera around  
the center of our world (and hence, our box).

Continue from here using the Chapter2.3_
UserInputAndCameraControl project files.

Implementing camera control
We created a basic camera earlier in this chapter, but it is currently stationary. In 
order to verify that our world is truly three-dimensional, it would help if we could 
rotate our camera around a central pivot point. There's a lot of 3D mathematics that 
goes into controlling camera movement (particularly when it comes to rotation), 
which is beyond the scope of this book. So, if some of what is covered here seems 
confusing, know that pretty much any book or blog that covers 3D mathematics  
and rendering as a whole should cover these topics.

To begin, we will need three new variables for our camera. These will store the 
current values for the camera's rotation and zoom:

float m_cameraDistance; // distance from the camera to its target
float m_cameraPitch; // pitch of the camera 
float m_cameraYaw; // yaw of the camera

Significant changes are required in our UpdateCamera() code to calculate  
the new camera position based on the previous variables. The additions to  
this function are liberally commented to explain the process, so we won't  
consume space explaining them here.

With our camera control code in place, we can manipulate its position by simply 
modifying the three new variables and calling UpdateCamera() to perform the 
required math for us. However, this isn't useful without some way of gathering 
input and making the necessary changes to the aforementioned variables.
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Gathering user input
FreeGLUT allows us to gather input using the Keyboard() and Special() callback 
functions. Remember that Keyboard() is called whenever FreeGLUT detects that 
a generic keyboard key has been pressed, such as letters, numbers, and so on. 
Meanwhile, the Special() function is called for special keys such as the arrow  
keys, Home, End, Page Up/Page Down, and so on.

In this chapter's source code, we've used both of these functions to grab different 
types of user input, and employed them to modify our camera's pitch, yaw, and 
zoom distance (recall that the roll is always calculated using an up vector that 
never changes). Each time the values are modified by a key press, we perform the 
mathematical calculations necessary to reposition the camera based on this updated 
information. Note that these functions are repeatedly called while a key is still held 
down, allowing the camera to continue moving as long as the key is pressed.

Within our application, we can now zoom and rotate the camera with the arrow 
keys, Z, and X. Here is our box viewed from a different angle and distance:
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Summary
We have delved into some OpenGL code and taken a crash course in 3D rendering, 
by exploring the basics of double-buffering, and camera initialization through the 
important view and projection matrices. We've used this knowledge to build a basic 
scene using primitive shapes, vertices, normals, depth testing, lighting, shading 
types, and finally, color. As confusing as they might seem, they all contribute to  
the building blocks from which all modern graphical techniques are born.

Finally, we created a simple and colored box, complete with a moveable camera  
and basic lighting effects. This will be our essential OpenGL application template 
going forward, and hopefully we learned a lot about the fundamentals of 3D 
graphics, OpenGL, and FreeGLUT from building it.

In the next chapter, we will begin to integrate our physics engine by creating and 
initializing Bullet's core components, and turn our cube into a rigid body which  
will fall under the effects of gravity!


